AMS-02 - ACOP Critical Design Review

Peter Dennett
PADSOFT, Inc
281 334 3800
pdennett@padsoft.com

EXPRESS Integration Agreement (EIA) Info - 1

- There is not yet a baseline for the ACOP EIA. The following relates some
 of the information what will be contained in the EIA.
- ACOP is a portion of the AMS-02 payload. It will reside within the US-Lab pressurized volume of ISS and provide support to the AMS-02 attached payload portion.
- AMS-02 is developed under "SSP 57113 Payload Integration Agreement for Alpha Magnetic Spectrometer-02 (AMS-02)" (Note: This PIA also not yet baselined). In the event of inconsistency between the ACOP EIA and the AMS-02 PIA, the PIA will be considered authoritative.
- The primary purposes of ACOP are to provide a large memory space to record AMS Experiment data and to provide a crew monitoring and control mechanism for the attached site payload.
- ACOP Mission duration is about 4 Years; it will cover the AMS-02 Mission and it will operate with AMS-02 (3+ years operating).

EIA Info - 2

- ACOP will be accommodated in a MDL/ISS locker inside a Standard 8/2 Express Rack
- ACOP is to be delivered and checked out 3 to 6 Months before the arrival of the external AMS-02 un-pressurized payload.
- The ACOP on orbit transportation baseline is by MPLM transportation rack. It can also be accommodated in the shuttle MDL.
- ACOP is categorized as a "Standard Express Rack payload" with the following deviations:
 - HRDL communication lines (Standard ER should exploit standard ER I/F's only)
 - ORU parts soft bag stowage container (Standard ER should not have stowage items external to the payload)

EIA Resources Requirements

- Utilize one (1) International Standard Payload Rack (ISPR) ISS/MDL locker for the planned 4-years of payload mission life. (OZ3 engineering study identified ER4 in P2 as continuous powered.)
- ACOP will utilize 1 soft bag MDL equivalent for ORU part transportation and stowage for recording media (removable hard drives) and spare parts.
- Utilize the Express Rack Payload Computer to provide a man machine interface to the Crew.
- Earlier ISS flight (AMS-02 L-3 to L-6 months) required to stage/install the ACOP assembly in ISS locker and install/initialize/checkout in the pressurized volume before AMS-02 truss-attached payload assembly portion is integrated and berthed on station.

HRDL Requirements

- HRDL connections are a special resource required for ACOP that usually are not available for a standard Express Rack payload.
- Full time (1) TX and (1) RX fiber are used for a AMS-02 to ACOP private payload network to support the complex data management required.
- Intermittent (1) TX fiber is used to downlink AMS-02 telemetry data.
- OZ3 engineering study identified (2) TX and (1) RX HRDL fibers on the UIP as available during the AMS-02 mission. (TX and RX under TESS (complete mission) and TX under MELFI(as initiation location, may have to move)).
- To connect the HRDL channels, optical fiber cables will be installed inside the laboratory from ACOP to these J7 connectors, following a defined path agreed between EPIM and AMS-02 Program.

EIA Resources Table

NOTE: The values found in Table 8.1-1 are controlled by SSP 57113 Payload Integration

Agreement for Alpha Magnetic Spectrometer-02 (AMS-02). In event of conflict SSP 57113 is the controlling document.

Table 8.1-1 ESTIMATED Steady State Payload Resource Requirements

Resources	Resource Requirements
On-Orbit Volume (cubic meters)	0.5 (2 MDL equivalents) (TBR)
Up Mass (kilograms per year)	46 installation plus 75/yr (TBR)
Down Mass (kilograms per year)	23 de-installation plus 75/yr (TBR)
Up Volume (cubic meters per year)	0.5 installation plus .75/yr (TBR)
Down Volume (cubic meters per year)	.25 de-installation plus .75/yr (TBR)
Energy (kilowatt hours per year)	1728 (TBR)
Crew Time (hours per year)	6hr (TBR)
Communications Downlink (terabits per year)	70 (TBR)
Communications Uplink (terabits per year)	8E-6 (TBR)
Late/Early Access (launch/return/both/none)	N/A
Support Equipment (list)	N/A
Other Coordinated Payloads (payload name)	AMS-02
Additional Requirements (specify):	2 HRDL TX and 1 HRDL RX connections.
	1 TX and 1 RX APS connections continuous.
	Continuous power.

EIA interface requirements

The following I/F's are required in the EIA

Interfaces
 Required (Yes/No)

Power

• 200 W (24Hours x 7 Days) YES

Data

• RS 422 YES

• Ethernet YES

PD Developed Software on ERLaptop Computer YES

• 5 Vdc discrete NO

2 TX HRDL and 1 RX HRDL (Not ER Standard I/F)

Cooling

EXPRESS Rack Avionics Air Assembly (AAA) Air Sys YES

Interface Control Documents Applicable 1/2

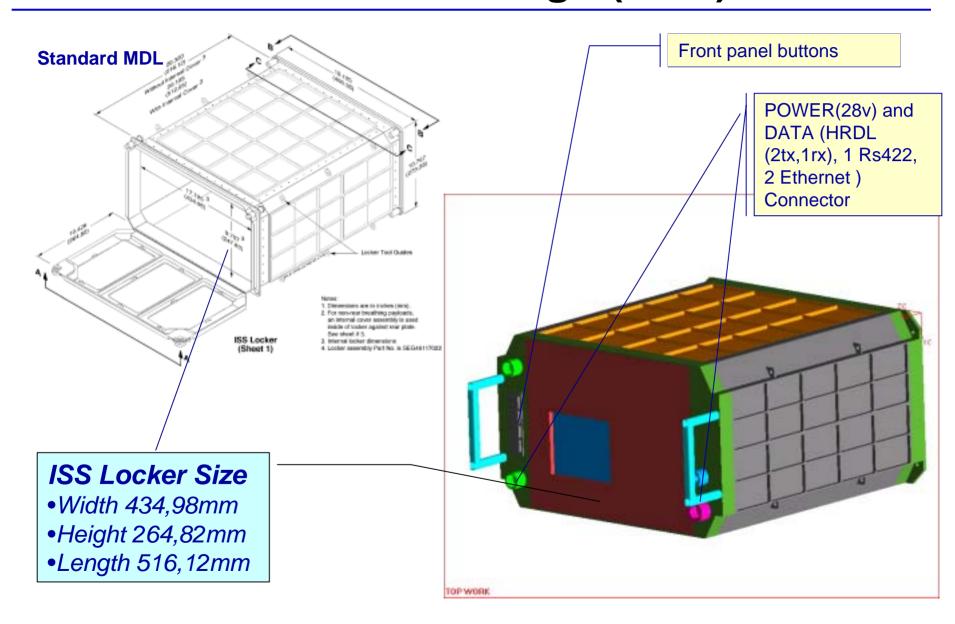
- The applicable ICDs are:
 - SSP52000-IDD-ERP for
 - Physical & Mechanical I/F's
 - Structural I/F's
 - Thermal I/F's
 - Power I/F's
 - Electrical I/F's
 - Control Data I/F's
 - Software I/F's
 - Human Factor I/F's
 - Safety

Interface Control Documents Applicable 2/2

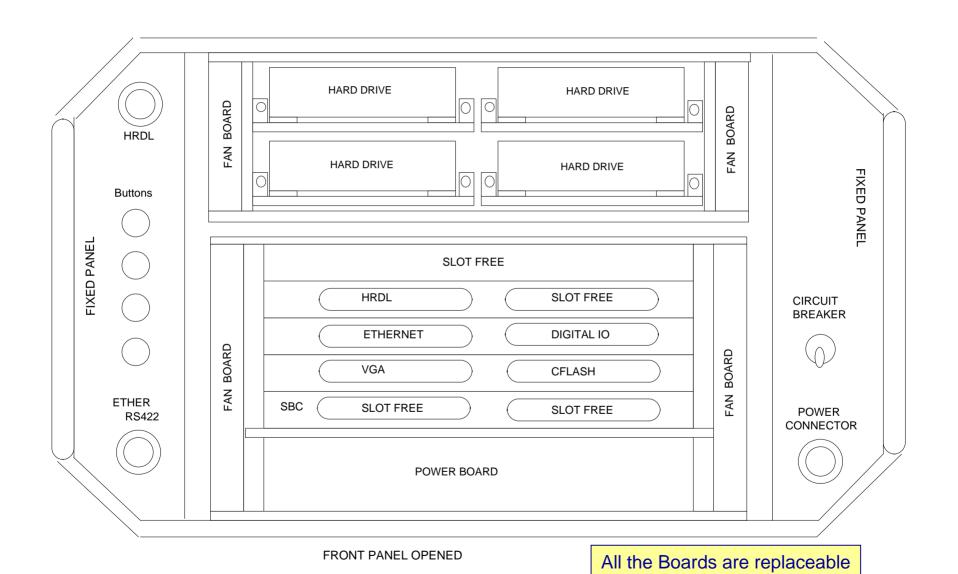
- SSP 50183 Physical Media, Physical Signalling & linklevel Protocol Specification for ensuring Interoperability of High Rate Data Link Stations on the International Space Program
- SSP 52050 S/W Interface Control Document for ISPR (HRDL section only)
- This last two documents are inserted in order to cover non-standard HRDL interfaces.

Physical & Mechanical I/F's requirements

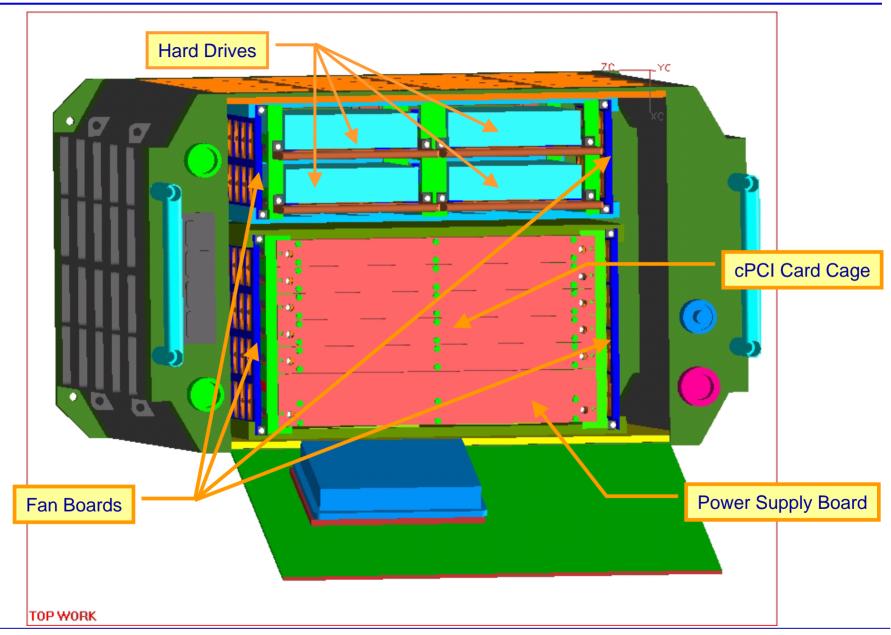
- The Physical & Mechanical I/F's will be compliant to the SSP52000-IDD-ERP section 3.3 concerning the standard modular MDL/ISS locker sections. Deviations from the standards are:
 - The front panel configuration. A custom front panel will be manufactured.
- The Mass Budget estimated value is about 26Kg (for ACOP only, ORU parts (1 MDL) excluded).

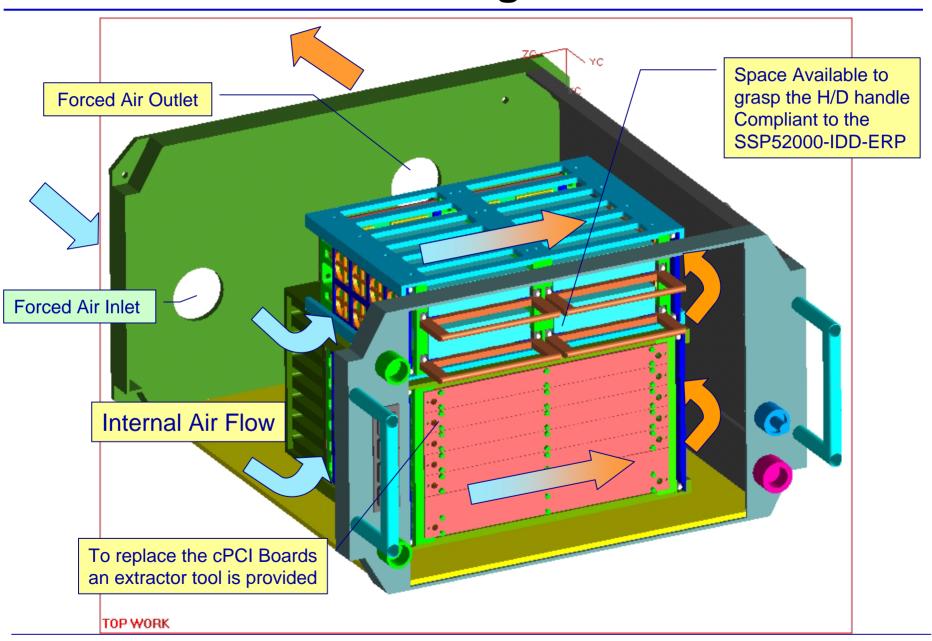

Operations Scenario

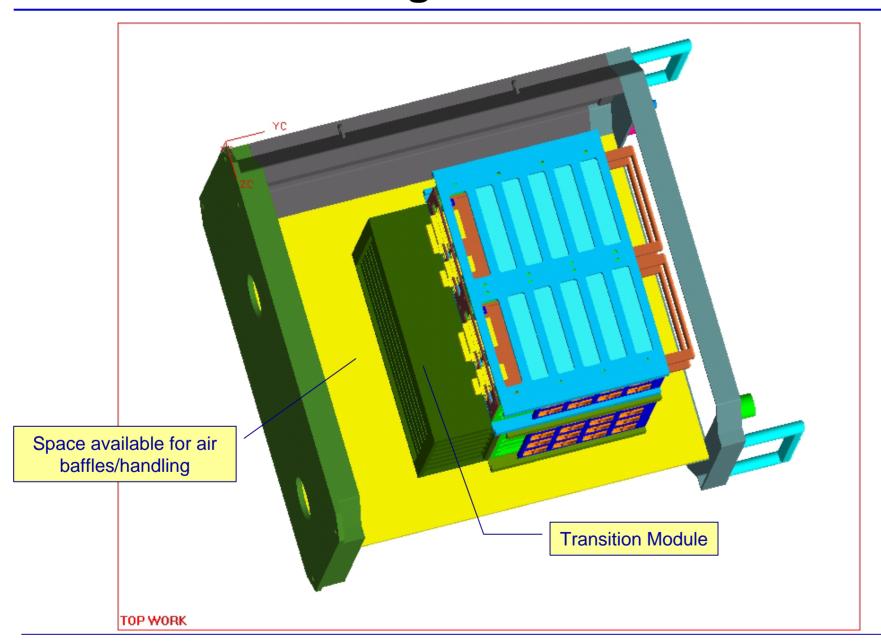
- ACOP is principally a ground operated payload.
- ACOP is powered and active whenever AMS-02 is active.
 Only short (<8hr outages).
- ACOP maintains an active bi-directional connection via the HRDL interface to AMS-02 at all times.
- The AMS-02 TX connection for this full time link may be tee'd by the APS to the HRFM/KU for downlink.
- Nominally AMS-02 payload operations needs to see 2Mbit/sec of data near real time (KU- band link).
- ACOP provides the mechanism for the crew to monitor and control AMS-02. Both front panel and PCS based interfaces supported.
- As KU access is available, ACOP will be commanded to use its' additional TX connection to down link data. ACOP will have the ability to burst this transmission (~20Mbits/sec).

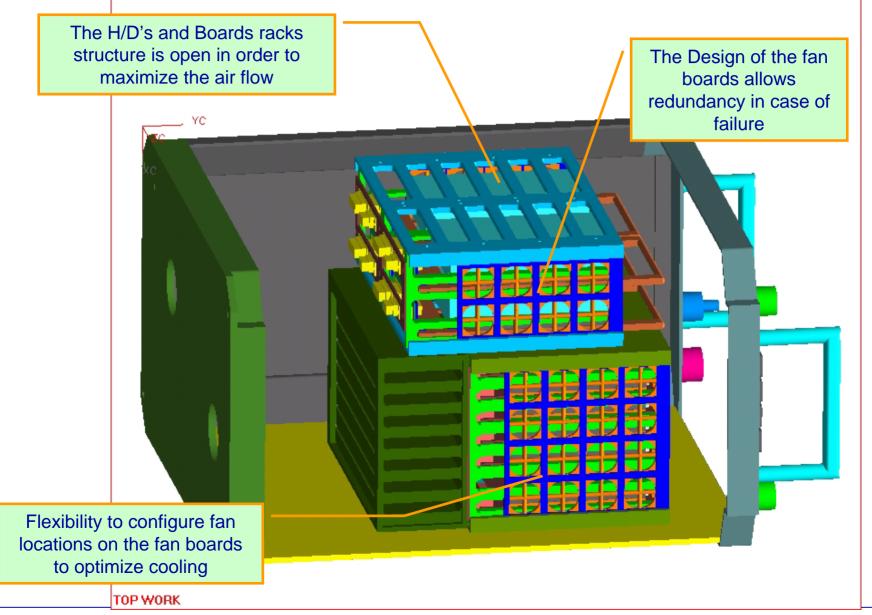

Operations - Recording Management

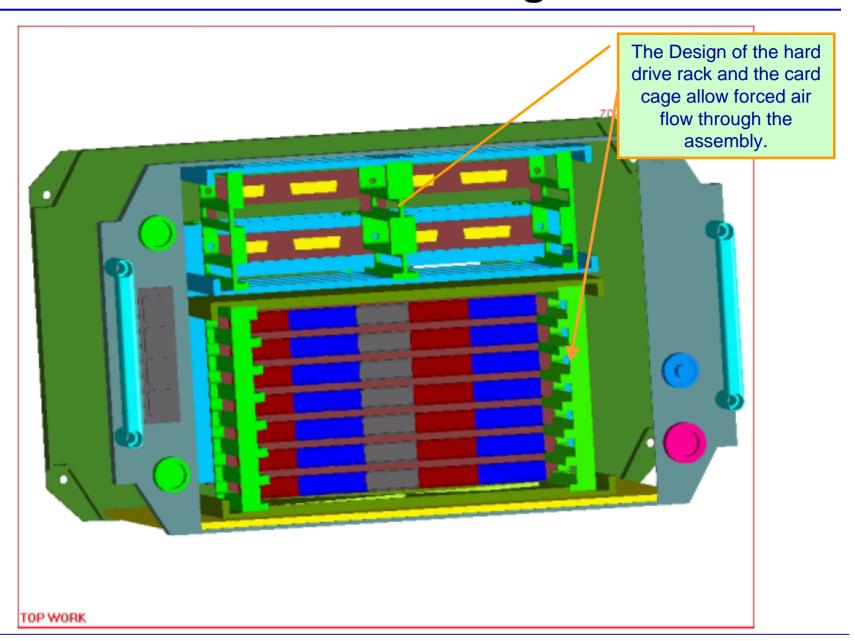
- All data transmitted by AMS-02 is recorded onto ACOP's hard drives as a master copy of the AMS-02 science data.
- When ACOP has acknowledged that the data is recorded, AMS-02 can release that data from its buffers.
- The four hard drives installed in ACOP provide an estimated 30 days of recording (Note: Dependent on event rate and size. Based on 200GB drives. Hopefully this will grow substantially.)
- The four installed hard drives will require periodic replacement by the ISS crew from the onboard stock of empty drives. (30 minute operation about every 30 days.)
- A batch of 20 hard drives provides 150 days of recording capacity.
- New batches of hard drives will be delivered by STS and the original master copies of the AMS-02 data will be returned to earth by STS.


Mechanical Design (MDL)

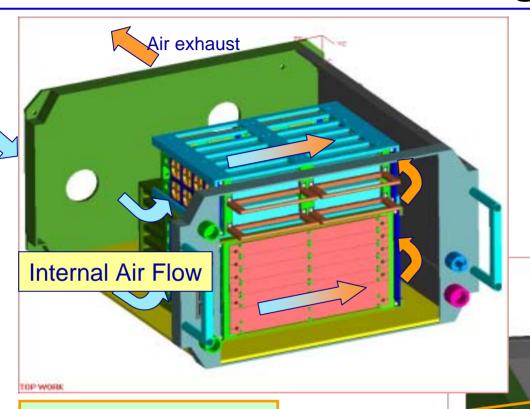

Mechanical Design: FM Front View


Mechanical Design


Mechanical Design – Air Flow


Mechanical Design – Transition Module

Mechanical Design – Fan Boards


Mechanical Design

Thermal Cooling requirements

- Thermal Cooling design will be compliant to the SSP52000-IDD-ERP document section 5
- Ducted Air and Cooling via Avionics Air Assembly (<= 200Watt) will be required for ACOP.
- ACOP will provide for internal air circulation 12 fans CFM (TBD). Fans redundancy will be provided. Noise control is provided by fan speed controls.
- The Front Panel surface temperature which is exposed to the Crew Members bare skin contact shall be maintained between -18C° and 49°C (as define in the IDD document)

Thermal Cooling Design

The H/D's and Boards racks structure is opened in order to allow and maximize the air flow

Flexibility to configure the fan positioning in the fan boards structure

Thermal Analysis will be provided

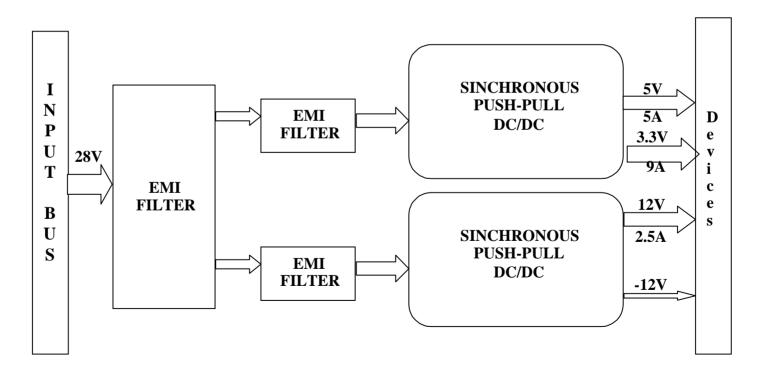
The fan board will allows to accommodate different dimension fans. Up to 2 or 8 fans in the HD fan board and 16 or 4 fans in the Rack fan board

The Design of the fan boards allow the fan redundancy in case of failure

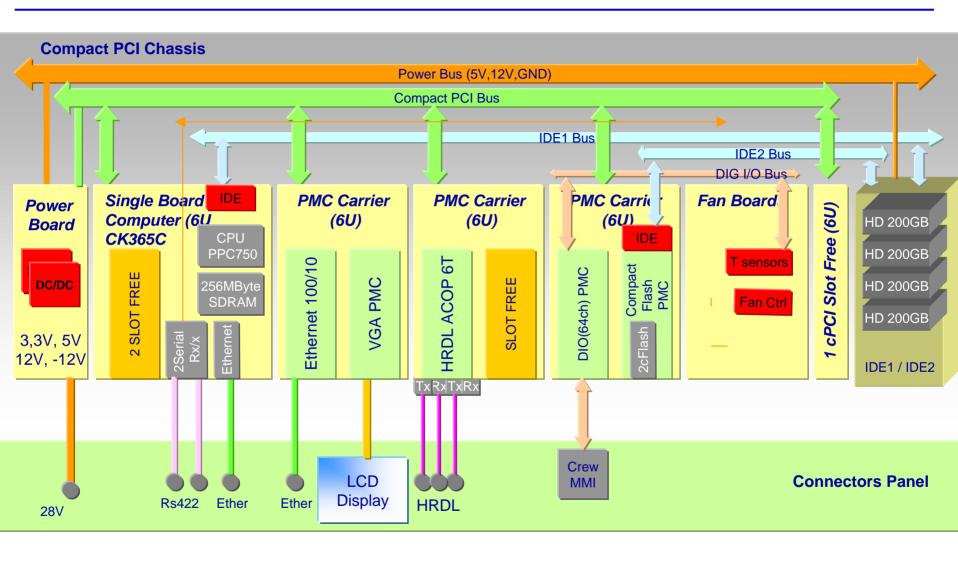
Mass Budget

ACOP FLIGHT MODEL: MASS BUDGET							
Description	Manufacturer	Part Number	(g)	unit			
Electronics							
CompactPCI Single Board Compute	SRS Technologies	CK365C (PPC750 256MByte)	492				
Transition Board	SBS Technologies	CK3-TM	250				
Transition Board	CGS	OKS-TIM	200				
PMC 3101-FP Network interface	SBS Technologies	PMC-3101-FP	90				
PMC Digital I/O	SBS Technologies	TPMC-680	74				
PMC Video	SBS Technologies	PMC-VIDEO PLUS	58				
CompactPCI 6U PMC Carrier board		CP-620	310				
PMC - Compact FLASH carrier w/ID		PMC-CF2	200				
PMC ACOP 6T	MIT	ACOP 6T	300				
Prototyping boards	CGS		300				
cPCI PCB	CGS		800				
LCD Monitor	TBD		600				
2Fan board	CGS		800				
3Fan board	CGS		1000				
Power Distribution	CGS		1500				
Hard Drives							
IDE Drives	Maxtor	ATA/133 120GB	800				
Connectors Cable							
Connectors, Cable			2000				
Mechanical Infrastructure			12000				
Elettronics Box	cgs		1200				
Hard Drives Chassis	CGS						
ISS Locker	TBD						
Front Panel	CGS						
ACOP FLIGHT MASS			25796				
ORU Parts							
Hard Drives			630	2			
Data Handling Boards			1000				
Power Board			1500				
2 Fans boards			800				
3 Fans boards			1000				
ORU PARTS MASS			22700				

Power/Electrical I/F's requirements

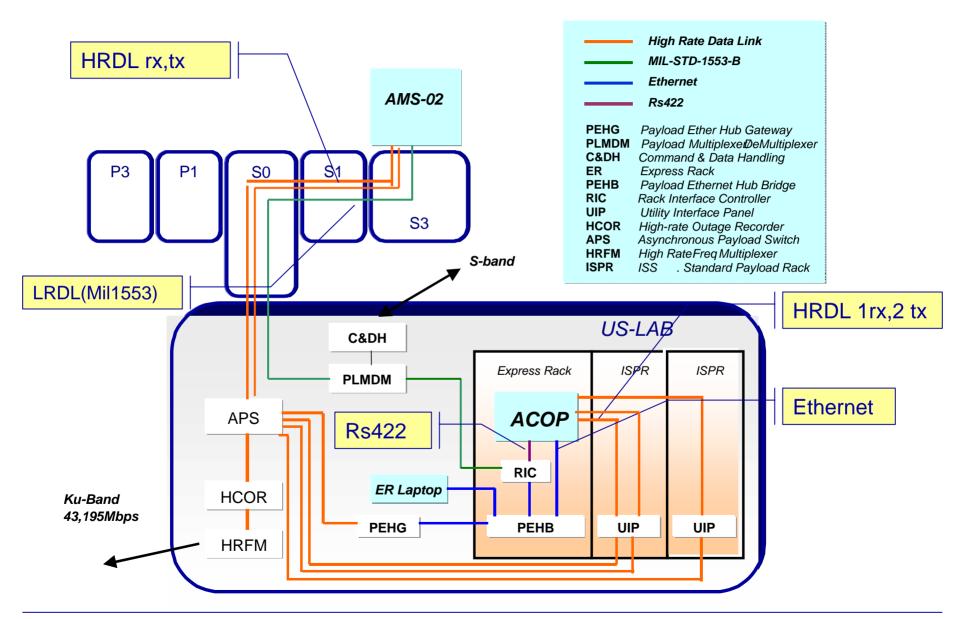

- The Power requirement will be compliant to the SSP52000-IDD-ERP document section 6
- ACOP will not be powered during STS transportation.
- On ISS ACOP will be powered from the ER upper or lower connector panel. A cable, with connectors meeting SSP-52000-IDD-ERP section 6.6, will be provided to link ACOP's front panel power connector to the ER connector panel.
- ACOP will provide overload protection devices (fuses and circuit breaker) for the power input line.
- ACOP power request is <=200Watt (TBC). At present the Estimated value (with 30% of margin) is about 110W average.
- ACOP input power line will be isolated from the structure by at least 1
 Mega Ohm with a parallel capacitance of <= 10MicroF measured at
 ACOP interface connector contact

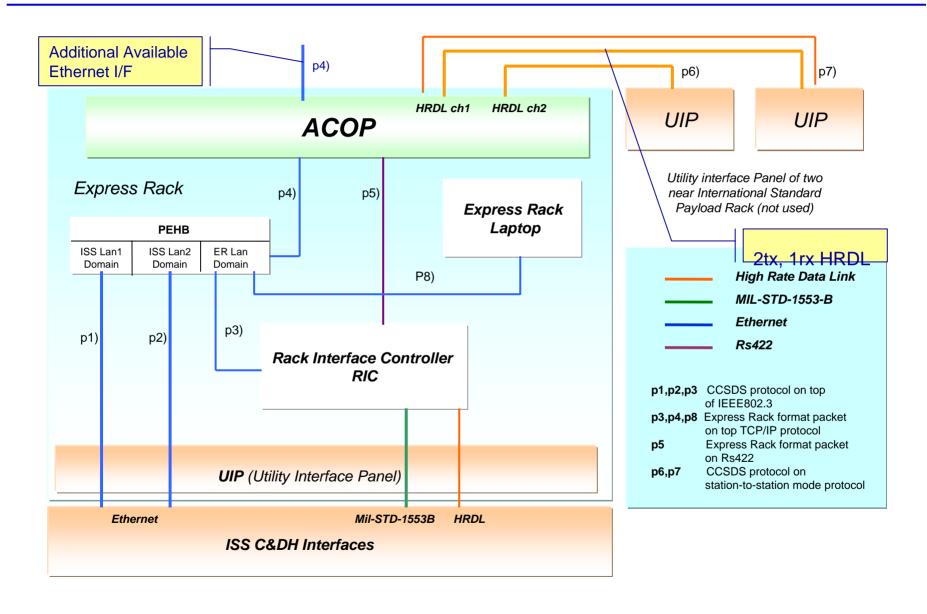
Power Budget


		ACOP FLIGH	MODEL: Power Bu	daet					
		7.001 12.011		<u></u>					
	Description	Manufacturer	Part Number	Curro	nt for a	each o	ıtloto	Units	Power (Watt
	Description	Manufacturer	Part Number	V	V	v each or	V	Units	Power (watt
				3.3	5.0		-		
				mA	mA	mA	-12.0 mA		
Boards				IIIA	ША	IIIA	IIIA		
Doarus	CompactPCI Single Board Compu	Ita SRS Tachnologias	CK365C (PPC750 256MByte)	5160	200	0	0	1	18
	Transition Board	SBS Technologies	CK3-TM	0	0			1	
	Transition Board	CGS	CR3-1W	0	0	0	0	2	
	2 Fan board	CGS		0	180	0	0	2	
	3 Fan board	CGS		0	270	0	0	2	
	Prototype board???	CGS		0	100	-	0	1	
	CompactPCI 6U PMC Carrier boar		CP-620	90	0		0	3	
	cPCI bus	CGS	01-020	0	0	0	0	1	0
PMC	oi oi bus	300		J	- 0	- "	- 0	'	†
I WIC	PMC 3101-FP Network interface	SBS Technologies	PMC-3101-FP	500	50	0	0	1	2
	PMC Digital I/O	SBS Technologies	TPMC-680	100	70	0		1	1
	PMC Video	SBS Technologies	PMC-VIDEO PLUS	0	110	0	0	1	1
	PMC - Compact FLASH carrier w/		PMC-CF2	300	200	_	0	1	2
	PMC ACOP 6T	MIT	ACOP 6T	300	300	0	0	1	2
Hard Dr		IVIII	ACCI 01	300	300	-	- 0	'	
naru bi	IDE Drives	Maxtor	ATA/133 120GB					4	
	Seek(mA)	IVIAXIOI	A1A/133 120GB	0	858	662	0	1	12
	Idle(mA)			0			0	1	
	Standby(mA)			0	90		0	2	
LCD Mo				-	30	3,	Ū	-	
LCD IVIC	TBD			0	0	650	0	1	8
	I BD			U	U	030	U	'	
Total C	urrent			6630	3636	1820	0		
Total C	urrent			0030	3030	1020	U		
Total C	urrent with 3	0% of Margin		8619	4727	2366	0		
Total O	direit with	570 Or Margin		0010	7/2/	2000			
Power	Outlets 3.3V								28
	Outlets 5.5V								24
-	Outlets 12V								28
	Outles -12V								0
									<u> </u>
Total P	ower								80
Power	Distribution board								
	ACOP PDB (75% efficiency)	CGS							27
		1 2 2 2							
Total P	ower (Input)								107

Power Board Schematic

Power Outlet 3.3V	28 Watt
Power Outlet 5V	24 Watt
Power Outlet 12V	28 Watt
Power Outlet -12V	optional


ACOP electrical architecture


Command & Data Interface requirements

- The following Data Interface requirements will meet the SSP52000-IDD-ERP document section 9.
 - Ethernet Interface. It will provide ER protocol to communicate to the RIC
 - Rs422 Interface.
- The HRDL Interface will meet the SSP52050 and SSP50183 documents.

Command & data Handling: ISS Data I/F

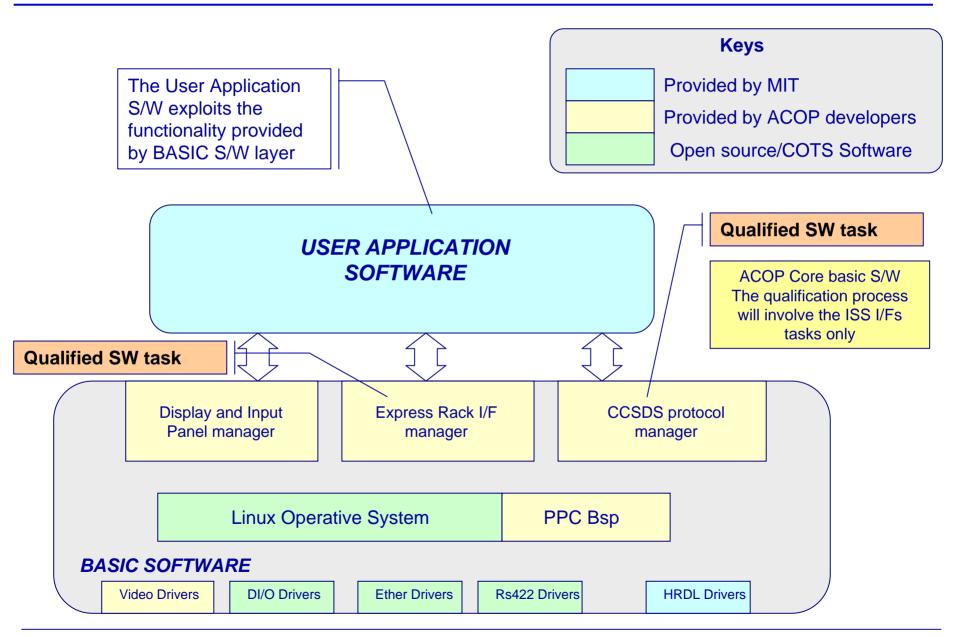
Command & data Handling: ER Data I/F

Command & data Handling: RIC Data I/F

RIC available data packets on Ethernet I/F. In the utilization column is defined the packets utilization in case of ACOP. The table is extracted from SSP52000-IDD-ERP

Description	Source	Destination	Frequency	Data Format	Utilization
Ethernet Payload to RIC					
Payload Health and Status	Payload	RIC	1Hz	Ethernet	Yes
PEP Bundle request	Payload	RIC	Async	Ethernet	No
PEP Procedure Execution Reque	Payload	RIC	Async	Ethernet	No
Rack Time Request	Payload	RIC	Async	Ethernet	Yes
Ancillary Data Config Control	Payload	RIC	Async	Ethernet	No
Payload Telemetry Downlink Dat	Payload	RIC	Async	Ethernet	No
EMU File Transfer Request	Payload	RIC	Async	Ethernet	No
Payload File Transfer Request	Payload	RIC	Async	Ethernet	No
Paylaod File Transfer Data Block	Payload	RIC	Async	Ethernet	No
RIC to Ethernet Payload					
Ancillary Data Set	RIC	Payload	Async, 0.1Hz,1F	Ethernet	No
Broadcast Ancillary Data Packet	RIC	Payload	10Hz	Ethernet	No
Rack Request response	RIC	Payload	Async	Ethernet	No
Rack Time Response	RIC	Payload	Async	Ethernet	Yes
EMU File Transfer Request	RIC	Payload	Async	Ethernet	No
Payload File Transfer Request	RIC	Payload	Async	Ethernet	No
Paylaod File Transfer Data Block	RIC	Payload	Async	Ethernet	No
Routed PEP Commands	RIC	Payload	Async	Ethernet	No

C&D I/F's: HRDL Data packets

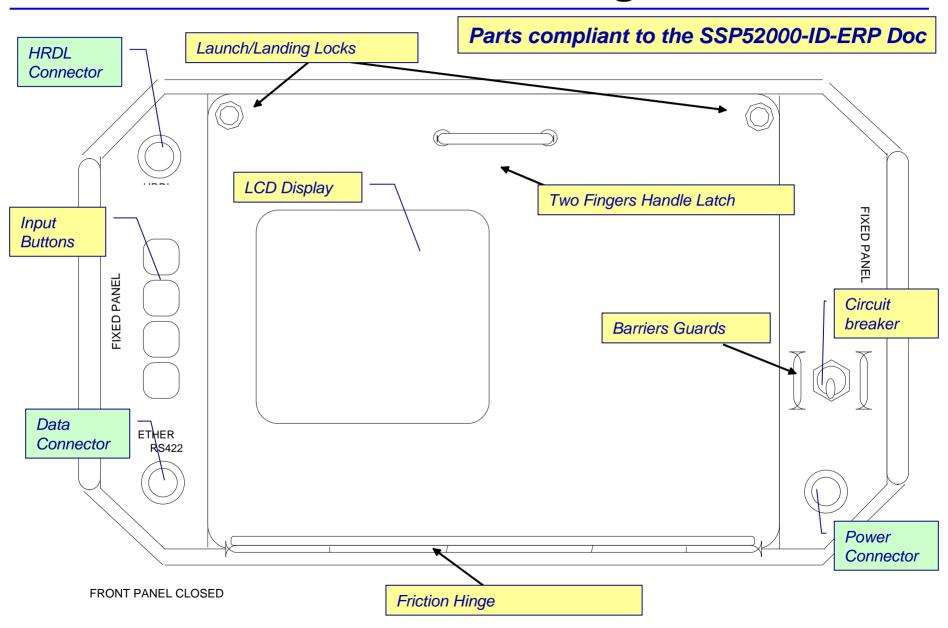

- On the Rs422 ACOP-RIC Interface are available the same data packets on Ethernet but for ACOP baseline the packets implementation is not foreseen.
- HRDL available data packets ACOP-AMS-02 (TBC)

Description	Source	Destination	Frequency	Data Format	Utilization
ACOP to AMS-02					
ACOP Commands	ACOP	AMS	Async	HRDL	Yes
File Transfer Upload	ACOP	AMS	Async	HRDL	Yes
AMS-02 to ACOP					
Command Response	AMS	ACOP	Async	HRDL	Yes
AMS Health & Status	AMS	ACOP	Async	HRDL	Yes
AMS Scientific Data	AMS	ACOP	20Mbps (peak)	HRDL	Yes
AMS House Keeping	AMS	ACOP	Async	HRDL	Yes

SW Breakdown

- ACOP SW Breakdown
 - ACOP CORE S/W
 - ACOP CORE BASIC S/W
 - ACOP CORE USER APPLICATION S/W developed by MIT
 - ERLS (Express Rack Laptop Software) S/W
 - ERLS BASIC S/W
 - ERLS USER APPLICATION S/W developed by MIT

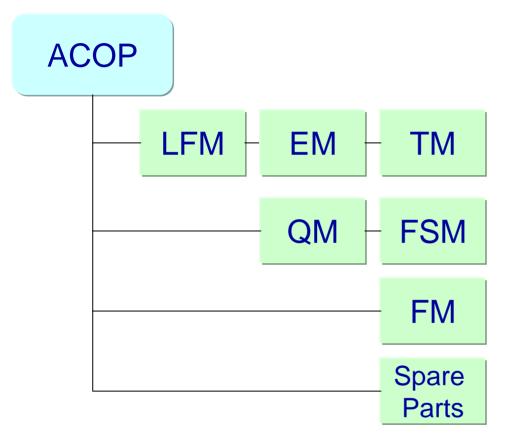
Software Top Level Architecture


Safety

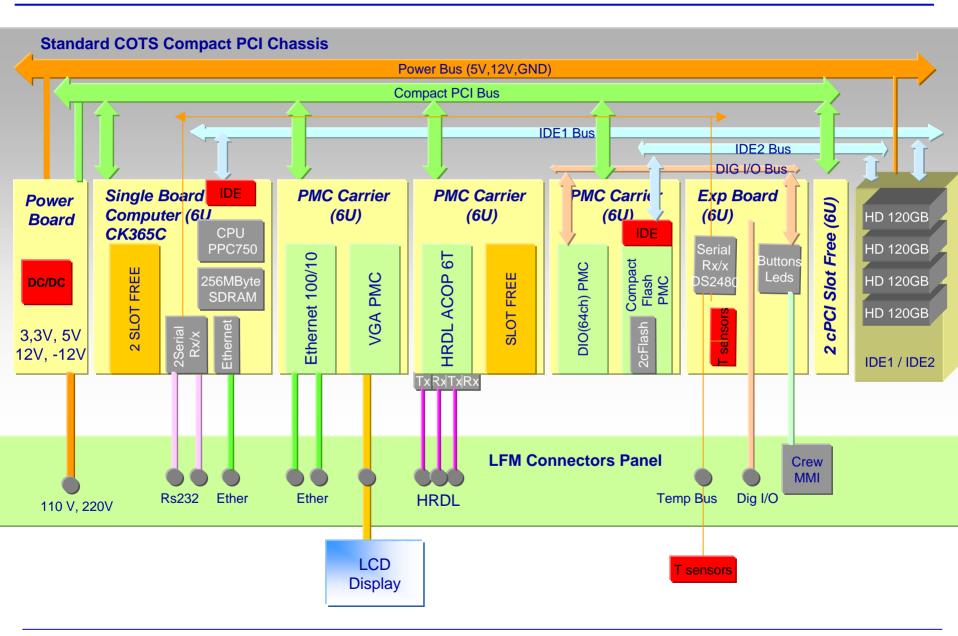
- ACOP will meet all safety requirements per SSP52000-IDD-ERP.
- Safety data packages will be developed for at least:
 - Fracture control
 - LCD panel. If required a guard cover will be used.
 - Rotating equipment
 - Hard drives (<8000 RPM)
 - Fans
 - Stored Energy
 - Batteries (CPU clock battery will be meet requirements or be removed)
 - Touch Temps
 - Front panel and interior access will have no hot spots
 - Sharp edges
 - Front panel and interior access will be inspected for sharp edges
 - Materials
 - Bills of material will be compiled and checked to comply with appropriate requirements.

Human Factor Interface

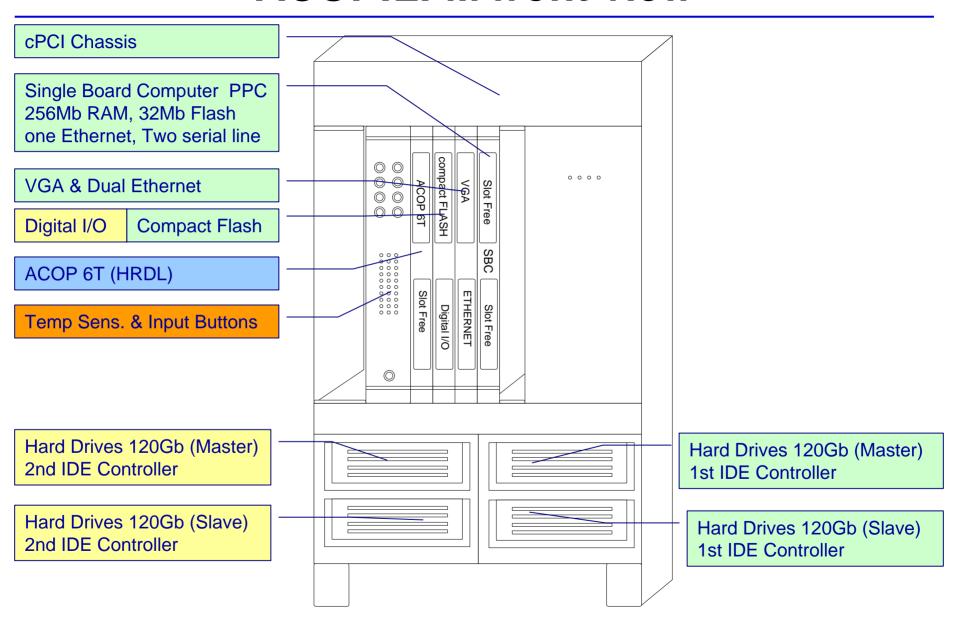
- The Human factor interface will meet the SSP52000-IDD-ERP document section 12.
- This requirement are applicable for the front panel and internal parts of ACOP to be replaced (ORU parts) or tool to be provided in order to replace the ORU parts.


Front Panel Design

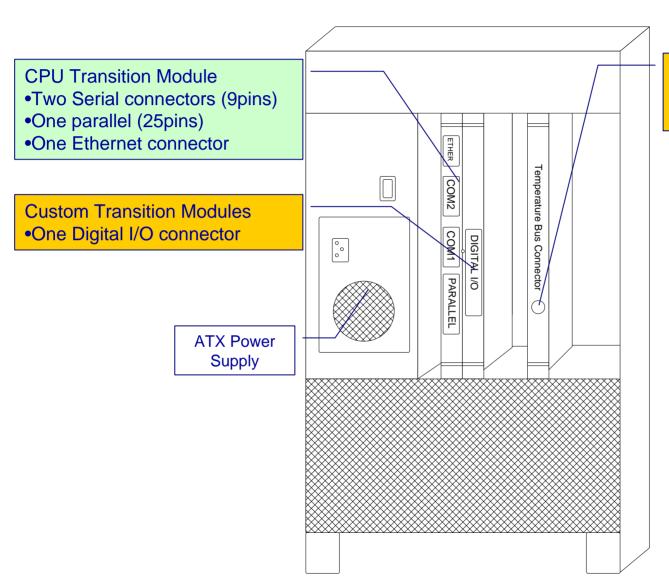
Acoustic Noise Requirements


- The Total Sound Pressure Level (SPL) of the Integrated EXPRESS Rack (from all noise sources) will not exceed NC-40 (noise curve is shown in the IDD document) in any octave band between 63 Hz and 8000Hz when measured at the loudest location 60 cm inboard in front of the payload rack. (SSP52000-IDD-ERP section 4.7.2)
- ACOP is a "continuous noise source"
- Acoustic Noise limits
 - The acoustic limits that EXPRESS Rack payload shall comply are provided in the IDD doc Table 4-IX (continous noise). These limits apply to measurement taken at the loudest location 0.6 m from each payload face (front,rear, top,bottom,left,right)
- To study ACOP's complience we need the noise curve for rack into which ACOP integrates.

ACOP Models



- LFM Low Fidelity Model
- EM Engineering Model
- TM Training Model
- QM Qualification Model
- FM Flight Model
- Flight Spare Model
- Spare Parts and ORU


ACOP: LFM Architecture

ACOP:LFM front view

ACOP: LFM layout back view

Custom Transition Modules
•One Temperature Bus
Connector

ACOP/LFM

